Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Helix nucleation kinetics from molecular simulations in explicit solvent

There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Hummer, G., García, A. E., & Garde, S. (2001). Helix nucleation kinetics from molecular simulations in explicit solvent. Proteins: Structure, Function, and Genetics, 42(1), 77-84.

Cite as: https://hdl.handle.net/21.11116/0000-0009-0247-5
We study the reversible folding/unfolding of short Ala and Gly-based peptides by molecular dynamics simulations of all-atom models in explicit water solvent. A kinetic analysis shows that the formation of a first alpha-helical turn occurs within 0.1-1 ns, in agreement with the analyses of laser temperature jump experiments. The unfolding times exhibit Arrhenius temperature dependence. For a rapidly nucleating all-Ala peptide, the helix nucleation time depends only weakly on temperature. For a peptide with enthalpically competing turn-like structures, helix nucleation exhibits an Arrhenius temperature dependence, corresponding to the unfolding of enthalpic traps in the coil ensemble. An analysis of structures in a "transition-state ensemble" shows that helix-to-coil transitions occur predominantly through breaking of hydrogen bonds at the helix ends, particularly at the C-terminus. The temperature dependence of the transition-state ensemble and the corresponding folding/unfolding pathways illustrate that folding mechanisms can change with temperature, possibly complicating the interpretation of high-temperature unfolding simulations. The timescale of helix formation is an essential factor in molecular models of protein folding. The rapid helix nucleation observed here suggests that transient helices form early in the folding event.