Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

<i>Colloquium:</i> Nonthermal pathways to ultrafast control in quantum materials

MPG-Autoren
/persons/resource/persons245033

Kennes,  D. M.
Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA-Fundamentals of Future Information Technology;
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free Electron Laser Science (CFEL);

/persons/resource/persons198728

McIver,  J. W.
Ultrafast Transport in Quantum Materials, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free Electron Laser Science (CFEL);

/persons/resource/persons182604

Sentef,  M. A.
Theoretical Description of Pump-Probe Spectroscopies in Solids, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free Electron Laser Science (CFEL);

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2103.14888.pdf
(Preprint), 8MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

de la Torre, A., Kennes, D. M., Claassen, M., Gerber, S., McIver, J. W., & Sentef, M. A. (2021). <i>Colloquium:</i> Nonthermal pathways to ultrafast control in quantum materials. Reviews of Modern Physics, 93(4): 041002. doi:10.1103/RevModPhys.93.041002.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-05C6-2
Zusammenfassung
Recent progress in utilizing ultrafast light-matter interaction to control the macroscopic properties of quantum materials is reviewed. Particular emphasis is placed on photoinduced phenomena that do not result from ultrafast heating effects but rather emerge from microscopic processes that are inherently nonthermal in nature. Many of these processes can be described as transient modifications to the free energy landscape resulting from the redistribution of quasiparticle populations, the dynamical modification of coupling strengths, and the resonant driving of the crystal lattice. Other pathways result from the coherent dressing of a material’s quantum states by the light field. A selection of recently discovered effects leveraging these mechanisms, as well as the technological advances that led to their discovery, is discussed. A road map for how the field can harness these nonthermal pathways to create new functionalities is presented.