Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Delocalization transition of a disordered axion insulator


Bernevig,  B. Andrei
Max Planck Institute of Microstructure Physics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

(Preprint), 2MB

Supplementary Material (public)
There is no public supplementary material available

Song, Z.-D., Lian, B., Queiroz, R., Ilan, R., Bernevig, B. A., & Stern, A. (2021). Delocalization transition of a disordered axion insulator. Physical Review Letters, 127(1): 016602. doi:10.1103/PhysRevLett.127.016602.

Cite as: https://hdl.handle.net/21.11116/0000-0009-0C88-1
The axion insulator is a higher-order topological insulator protected by inversion symmetry. We show that, under quenched disorder respecting inversion symmetry on average, the topology of the axion insulator stays robust, and an intermediate metallic phase in which states are delocalized is unavoidable at the transition from an axion insulator to a trivial insulator. We derive this conclusion from general arguments, from classical percolation theory, and from the numerical study of a 3D quantum network model simulating a disordered axion insulator through a layer construction. We find the localization length critical exponent near the delocalization transition to be ν=1.42±0.12. We further show that this delocalization transition is stable even to weak breaking of the average inversion symmetry, up to a critical strength. We also quantitatively map our quantum network model to an effective Hamiltonian and we find its low-energy k⋅p expansion.