Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Excitonic Tonks-Girardeau and charge-density wave phases in monolayer semiconductors

MPG-Autoren
/persons/resource/persons261127

Ołdziejewski,  Rafał
Theory, Max Planck Institute of Quantum Optics, Max Planck Society;
MCQST - Munich Center for Quantum Science and Technology, External Organizations;

/persons/resource/persons206353

Knörzer,  Johannes
Theory, Max Planck Institute of Quantum Optics, Max Planck Society;
MCQST - Munich Center for Quantum Science and Technology, External Organizations;

/persons/resource/persons220323

Schmidt,  Richard
Theory, Max Planck Institute of Quantum Optics, Max Planck Society;
MCQST - Munich Center for Quantum Science and Technology, External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

DummyFileName
(Preprint), 3MB

6345.pdf
(Verlagsversion), 852KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ołdziejewski, R., Chiocchetta, A., Knörzer, J., & Schmidt, R. (2022). Excitonic Tonks-Girardeau and charge-density wave phases in monolayer semiconductors. Physical Review B, 106: L081412. doi:10.1103/PhysRevB.106.L081412.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-11D3-5
Zusammenfassung
Excitons in two-dimensional semiconductors provide a novel platform for fundamental studies of many-body interactions. In particular, dipolar interactions between spatially indirect excitons may give rise to strongly correlated phases of matter that so far have been out of reach of experiments. Here, we show that excitonic few-body systems in atomically thin transition-metal dichalcogenides undergo a crossover from a Tonks-Girardeau to a charge-density-wave regime. To this end, we take into account realistic system parameters and predict the effective exciton-exciton interaction potential. We find that the pair correlation function contains key signatures of the many-body crossover already at small exciton numbers and show that photoluminescence spectra provide readily accessible experimental fingerprints of these strongly correlated quantum many-body states.