English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

EarthNet2021: A large-scale dataset and challenge for Earth surface forecasting as a guided video prediction task

MPS-Authors
/persons/resource/persons240953

Requena Mesa,  Christian
Empirical Inference of the Earth System, Dr. Miguel D. Mahecha, Department Biogeochemical Integration, Prof. Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;
IMPRS International Max Planck Research School for Global Biogeochemical Cycles, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons265202

Benson,  Vitus
Department Biogeochemical Integration, Prof. Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;
IMPRS International Max Planck Research School for Global Biogeochemical Cycles, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62524

Reichstein,  Markus
Department Biogeochemical Integration, Prof. Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Requena Mesa, C., Benson, V., Reichstein, M., Runge, J., & Denzler, J. (2021). EarthNet2021: A large-scale dataset and challenge for Earth surface forecasting as a guided video prediction task. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Nashville, TN, USA: IEEE. doi:10.1109/CVPRW53098.2021.00124.


Cite as: https://hdl.handle.net/21.11116/0000-0009-0D24-1
Abstract
There is no abstract available