Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

On the anomalous low-resistance state and exceptional Hall component in hard-magnetic Weyl nanoflakes

MPG-Autoren
/persons/resource/persons126601

Felser,  Claudia
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zeng, Q., Gu, G., Shi, G., Shen, J., Ding, B., Zhang, S., et al. (2021). On the anomalous low-resistance state and exceptional Hall component in hard-magnetic Weyl nanoflakes. Science China - Physics, Mechanics & Astronomy, 64(8): 287512, pp. 1-7. doi:10.1007/s11433-021-1715-4.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-1FA8-8
Zusammenfassung
Magnetic topological materials, which combine magnetism and topology, are expected to host emerging topological states and exotic quantum phenomena. In this study, with the aid of greatly enhanced coercive fields in high-quality nanoflakes of the magnetic Weyl semimetal Co3Sn2S2, we investigate anomalous electronic transport properties that are difficult to reveal in bulk Co3Sn2S2 or other magnetic materials. When the magnetization is antiparallel to the applied magnetic field, the low longitudinal resistance state occurs, which is in sharp contrast to the high resistance state for the parallel case. Meanwhile, an exceptional Hall component that can be up to three times larger than conventional anomalous Hall resistivity is also observed for transverse transport. These anomalous transport behaviors can be further understood by considering nonlinear magnetic textures and the chiral magnetic field associated with Weyl fermions, extending the longitudinal and transverse transport physics and providing novel degrees of freedom in the spintronic applications of emerging topological magnets.