English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The cryo-EM structure of the bd oxidase from M. tuberculosis reveals a unique structural framework and enables rational drug design to combat TB

MPS-Authors
/persons/resource/persons137866

Safarian,  Schara
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons250197

Wu,  Di
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons146403

Mehdipour,  Ahmad Reza
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons241642

Radloff,  Melanie
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons250130

Welsch,  Sonja
Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons15259

Hummer,  Gerhard
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;
Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany;

/persons/resource/persons137800

Michel,  Hartmut
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Safarian, S., Opel-Reading, H. K., Wu, D., Mehdipour, A. R., Hards, K., Harold, L. H., et al. (2021). The cryo-EM structure of the bd oxidase from M. tuberculosis reveals a unique structural framework and enables rational drug design to combat TB. Nature Communications, 12(1): 5236. doi:10.1038/s41467-021-25537-z.


Cite as: https://hdl.handle.net/21.11116/0000-0009-1FFE-8
Abstract
New drugs are urgently needed to combat the global TB epidemic. Targeting simultaneously multiple respiratory enzyme complexes of Mycobacterium tuberculosis is regarded as one of the most effective treatment options to shorten drug administration regimes, and reduce the opportunity for the emergence of drug resistance. During infection and proliferation, the cytochrome bd oxidase plays a crucial role for mycobacterial pathophysiology by maintaining aerobic respiration at limited oxygen concentrations. Here, we present the cryo-EM structure of the cytochrome bd oxidase from M. tuberculosis at 2.5 Å. In conjunction with atomistic molecular dynamics (MD) simulation studies we discovered a previously unknown MK-9-binding site, as well as a unique disulfide bond within the Q-loop domain that defines an inactive conformation of the canonical quinol oxidation site in Actinobacteria. Our detailed insights into the long-sought atomic framework of the cytochrome bd oxidase from M. tuberculosis will form the basis for the design of highly specific drugs to act on this enzyme.