Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Collective Entrainment and Confinement Amplify Transport by Schooling Microswimmers

MPG-Autoren
/persons/resource/persons199409

Jin,  Chenyu
Group Active soft matter, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173584

Maass,  Corinna C.
Group Active soft matter, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Jin, C., Chen, Y., Maass, C. C., & Mathijssen, A. J. (2021). Collective Entrainment and Confinement Amplify Transport by Schooling Microswimmers. Physical Review Letters, 127: 088006. doi:10.1103/PhysRevLett.127.088006.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-200B-7
Zusammenfassung
Microswimmers can serve as cargo carriers that move deep inside complex flow networks. When a
school collectively entrains the surrounding fluid, their transport capacity can be enhanced. This effect is
quantified with good agreement between experiments with self-propelled droplets and a confined
Brinkman squirmer model. The volume of liquid entrained can be much larger than the droplet itself,
amplifying the effective cargo capacity over an order of magnitude, even for dilute schools. Hence,
biological and engineered swimmers can efficiently transport materials into confined environments.