English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A new ionization network and radiation transport module in pluto

MPS-Authors
/persons/resource/persons25791

Sternberg,  Amiel
Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Sarkar, K. C., Sternberg, A., & Gnat, O. (2021). A new ionization network and radiation transport module in pluto. Monthly Notices of the Royal Astronomical Society, 503(4), 5807-5825. doi:10.1093/mnras/stab578.


Cite as: https://hdl.handle.net/21.11116/0000-0009-206F-7
Abstract
We introduce a new general-purpose time-dependent ionization network (IN) and a radiation transport (RT) module for the magnetohydrodynamic (MHD) code pluto. Our IN is reliable for temperatures ranging from 5 × 103 to 3 × 108 K and includes all ionization states of H, He, C, N, O, Ne, Mg, Si, S, and Fe, making it suitable for studying a variety of astrophysical scenarios. Radiation loss for each ion–electron pair is calculated using cloudy-17 data on the fly. Photoionization and charge exchange are the main processes contributing to chemical heating. The IN is fully coupled to the RT module over a large range of opacities at different frequencies. The RT module employs a method of short characteristics assuming spherical symmetry. The radiation module requires the assumption of spherical symmetry, while the IN is compatible with full 3D. We also include a simple prescription for dust opacity, grain destruction, and the dust contribution to radiation pressure. We present numerical tests to show the reliability and limitations of the new modules. We also present a post-processing tool to calculate projected column densities and emission spectra.