Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Hierarchical fragmentation in high redshift galaxies revealed by hydrodynamical simulations

MPG-Autoren
/persons/resource/persons146718

Behrendt,  Manuel
Optical and Interpretative Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons4602

Burkert,  Andreas
Optical and Interpretative Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Faure, B., Bournaud, F., Fensch, J., Daddi, E., Behrendt, M., Burkert, A., et al. (2021). Hierarchical fragmentation in high redshift galaxies revealed by hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 502(3), 4641-4657. doi:10.1093/mnras/stab272.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-225C-A
Zusammenfassung
High-redshift star-forming galaxies have very different morphologies compared to nearby ones. Indeed, they are often dominated by bright star-forming structures of masses up to 108–9 M dubbed ‘giant clumps’. However, recent observations questioned this result by showing only low-mass structures or no structure at all. We use Adaptative Mesh Refinement hydrodynamical simulations of galaxies with parsec-scale resolution to study the formation of structures inside clumpy high-redshift galaxies. We show that in very gas-rich galaxies star formation occurs in small gas clusters with masses below 107–8 M that are themselves located inside giant complexes with masses up to 108 and sometimes 109 M. Those massive structures are similar in mass and size to the giant clumps observed in imaging surveys, in particular with the Hubble Space Telescope. Using mock observations of simulated galaxies, we show that at very high resolution with instruments like the Atacama Large Millimeter Array or through gravitational lensing, only low-mass structures are likely to be detected, and their gathering into giant complexes might be missed. This leads to the non-detection of the giant clumps and therefore introduces a bias in the detection of these structures. We show that the simulated giant clumps can be gravitationally bound even when undetected in mocks representative for ALMA observations and HST observations of lensed galaxies. We then compare the top-down fragmentation of an initially warm disc and the bottom-up fragmentation of an initially cold disc to show that the process of formation of the clumps does not impact their physical properties.