English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Observation of ultrafast interfacial Meitner-Auger energy transfer in a van der Waals heterostructure

MPS-Authors
/persons/resource/persons206871

Dong,  Shuo
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons227651

Beaulieu,  Samuel
Physical Chemistry, Fritz Haber Institute, Max Planck Society;
Universite de Bordeaux - CNRS - CEA, CELIA, UMR5107;

Rosenzweig,  Philipp
Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons227631

Pincelli,  Tommaso
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons205838

Dendzik,  Maciej Ramon
Physical Chemistry, Fritz Haber Institute, Max Planck Society;
Department of Applied Physics, KTH Royal Institute of Technology;

/persons/resource/persons232536

Maklar,  Julian
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons136124

Xian,  R. Patrick
Physical Chemistry, Fritz Haber Institute, Max Planck Society;
Department of Engineering, University of Cambridge;

/persons/resource/persons232532

Neef,  Alexander
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

Mohammed,  Avaise
Max Planck Institute for Solid State Research, Max Planck Society;

Schulz,  Armin
Max Planck Institute for Solid State Research, Max Planck Society;

Takagi,  Hidenori
Max Planck Institute for Solid State Research, Max Planck Society;
Department of Physics, University of Tokyo;
Institute for Functional Matter and Quantum Technologies, University of Stuttgart;

Starke,  Ulrich
Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons22250

Wolf,  Martin
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

Nakamura,  Hiro
Max Planck Institute for Solid State Research, Max Planck Society;
Department of Physics, University of Arkansas;

/persons/resource/persons104701

Rettig,  Laurenz
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21497

Ernstorfer,  Ralph
Physical Chemistry, Fritz Haber Institute, Max Planck Society;
Institut für Optik und Atomare Physik, Technische Universität Berlin;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

2108.06803.pdf
(Preprint), 11MB

s41467-023-40815-8.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Dong, S., Beaulieu, S., Selig, M., Rosenzweig, P., Christiansen, D., Pincelli, T., et al. (2023). Observation of ultrafast interfacial Meitner-Auger energy transfer in a van der Waals heterostructure. Nature Communications, 14: 5057. doi:10.1038/s41467-023-40815-8.


Cite as: https://hdl.handle.net/21.11116/0000-0009-22C2-5
Abstract
Atomically thin layered van der Waals heterostructures feature exotic and emergent optoelectronic properties. With growing interest in these novel quantum materials, the microscopic understanding of fundamental interfacial coupling mechanisms is of capital importance. Here, using multidimensional photoemission spectroscopy, we provide a layer- and momentum-resolved view on ultrafast interlayer electron and energy transfer in a monolayer-WSe2/graphene heterostructure. Depending on the nature of the optically prepared state, we find the different dominating transfer mechanisms: while electron injection from graphene to WSe2 is observed after photoexcitation of quasi-free hot carriers in the graphene layer, we establish an interfacial Meitner-Auger energy transfer process following the excitation of excitons in WSe2. By analysing the time-energy-momentum distributions of excited-state carriers with a rate-equation model, we distinguish these two types of interfacial dynamics and identify the ultrafast conversion of excitons in WSe2 to valence band transitions in graphene. Microscopic calculations find interfacial dipole-monopole coupling underlying the Meitner-Auger energy transfer to dominate over conventional Förster- and Dexter-type interactions, in agreement with the experimental observations. The energy transfer mechanism revealed here might enable new hot-carrier-based device concepts with van der Waals heterostructures.