English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Field-induced transition within the superconducting state of CeRh2As2

MPS-Authors
/persons/resource/persons200145

Khim,  S.
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons265345

Landaeta,  J. F.
Physics of Unconventional Metals and Superconductors, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons228423

Banda,  J.
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons265347

Bannor,  N.
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126548

Brando,  M.
Manuel Brando, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons232084

Hafner,  D.
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126713

Küchler,  R.
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126561

Cardoso-Gil,  R.
Raul Cardoso, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126697

Stockert,  U.
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126742

Mackenzie,  A. P.
Andrew Mackenzie, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126614

Geibel,  C.
Christoph Geibel, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons186149

Hassinger,  E.
Physics of Unconventional Metals and Superconductors, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Khim, S., Landaeta, J. F., Banda, J., Bannor, N., Brando, M., Brydon, P. M. R., et al. (2021). Field-induced transition within the superconducting state of CeRh2As2. Science, 373(6558), 1012-1016. doi:10.1126/science.abe7518.


Cite as: https://hdl.handle.net/21.11116/0000-0009-2552-1
Abstract
Materials with multiple superconducting phases are rare. Here, we report the discovery of two-phase unconventional superconductivity in CeRh2As2. Using thermodynamic probes, we establish that the superconducting critical field of its high-field phase is as high as 14 tesla, even though the transition temperature is only 0.26 kelvin. Furthermore, a transition between two different superconducting phases is observed in a c axis magnetic field. Local inversion-symmetry breaking at the cerium sites enables Rashba spin-orbit coupling alternating between the cerium sublayers. The staggered Rashba coupling introduces a layer degree of freedom to which the field-induced transition and high critical field seen in experiment are likely related.