English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Dynamical consequences of regional heterogeneity in the brain’s transcriptional landscape

MPS-Authors
/persons/resource/persons208989

Deco,  Gustavo
Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain;
Catalan Institution for Research and Advanced Studies (ICREA), University Pompeu Fabra, Barcelona, Spain;
Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Deco_2021.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Deco, G., Kringelbach, M. L., Arnatkeviciute, A., Oldham, S., Sabaroedin, K., Rogasch, N. C., et al. (2021). Dynamical consequences of regional heterogeneity in the brain’s transcriptional landscape. Science Advances, 7(29): eabf4752. doi:10.1126/sciadv.abf4752.


Cite as: https://hdl.handle.net/21.11116/0000-0009-246F-3
Abstract
Brain regions vary in their molecular and cellular composition, but how this heterogeneity shapes neuronal dynamics is unclear. Here, we investigate the dynamical consequences of regional heterogeneity using a biophysical model of whole-brain functional magnetic resonance imaging (MRI) dynamics in humans. We show that models in which transcriptional variations in excitatory and inhibitory receptor (E:I) gene expression constrain regional heterogeneity more accurately reproduce the spatiotemporal structure of empirical functional connectivity estimates than do models constrained by global gene expression profiles or MRI-derived estimates of myeloarchitecture. We further show that regional transcriptional heterogeneity is essential for yielding both ignition-like dynamics, which are thought to support conscious processing, and a wide variance of regional-activity time scales, which supports a broad dynamical range. We thus identify a key role for E:I heterogeneity in generating complex neuronal dynamics and demonstrate the viability of using transcriptomic data to constrain models of large-scale brain function.