Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Hierarchy in language interpretation: Evidence from behavioural experiments and computational modelling

MPG-Autoren
/persons/resource/persons225918

Coopmans,  Cas W.
Neurobiology of Language Department, MPI for Psycholinguistics, Max Planck Society;
International Max Planck Research School for Language Sciences, MPI for Psycholinguistics, Max Planck Society;
Center for Language Studies, External Organizations;

/persons/resource/persons69

Hagoort,  Peter
Neurobiology of Language Department, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour, External Organizations;

/persons/resource/persons198520

Martin,  Andrea E.
Language and Computation in Neural Systems, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour, External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Coopmans, C. W., De Hoop, H., Kaushik, K., Hagoort, P., & Martin, A. E. (2022). Hierarchy in language interpretation: Evidence from behavioural experiments and computational modelling. Language, Cognition and Neuroscience, 37(4), 420-439. doi:10.1080/23273798.2021.1980595.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-2472-E
Zusammenfassung
It has long been recognised that phrases and sentences are organised hierarchically, but many computational models of language treat them as sequences of words without computing constituent structure. Against this background, we conducted two experiments which showed that participants interpret ambiguous noun phrases, such as second blue ball, in terms of their abstract hierarchical structure rather than their linear surface order. When a neural network model was tested on this task, it could simulate such “hierarchical” behaviour. However, when we changed the training data such that they were not entirely unambiguous anymore, the model stopped generalising in a human-like way. It did not systematically generalise to novel items, and when it was trained on ambiguous trials, it strongly favoured the linear interpretation. We argue that these models should be endowed with a bias to make generalisations over hierarchical structure in order to be cognitively adequate models of human language.