Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

PtRu nanoparticles supported on noble carbons for ethanol electrooxidation

MPG-Autoren
/persons/resource/persons257083

Lepre,  Enrico
Nieves Lopez Salas, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons228884

Lopez Salas,  Nieves
Nieves Lopez Salas, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Article.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Rodríguez-Gómez, A., Lepre, E., Sánchez-Silva, L., Lopez Salas, N., & de la Osa, A. R. (2022). PtRu nanoparticles supported on noble carbons for ethanol electrooxidation. Journal of Energy Chemistry, 66, 168-180. doi:10.1016/j.jechem.2021.07.004.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-2573-C
Zusammenfassung
In this work, three cytosine derived nitrogen doped carbonaceous materials (noble carbons, NCs) with different atomic C/N ratios and porous networks have been synthesized and used as supports for PtRu electrocatalysts in the ethanol oxidation reaction (EOR) for clean hydrogen production. Both, the metal phase and the carbon support play critical roles in the electrocatalysts final performance. Lower NPs size distribution was obtained over supports with low atomic C/N ratios (i.e., 4 and 6) and defined porosity (i.e., 1701 m2 g−1 for PtRu/CNZ and 1834 m2 g−1 for PtRu/CLZ, respectively). In contrast, a lower C/N ratio and poor porous network (i.e., 65 m2 g−1, PtRu/CLK) led to the largest particle size and fostered an increase of the alloying degree between Pt and Ru NPs (i.e., 3 for C/N ~ 6 and 28 for C/N ~ 3). Electrochemical active surface area was found to increase with decreasing NPs size and the alloy extent, due to a higher availability of Pt active sites. Accelerated degradation tests showed that PtRu/NCs outperform similar to PtRu NPs on commercial carbon pointing at the stabilizing effect of NCs. PtRu/CNZ exhibited the best electrochemical performance (i.e., 69.1 mA mgPt−1), outperforming PtRu/CLZ and PtRu/CLK by 3- and 9-fold, respectively, due to a suitable compromise between particle sizes, degree of alloy, textural properties and elemental composition. Best anodes were scaled-up to a proton exchange membrane cell and PtRu/CNZ was proved to provide the best electrocatalytic activity (262 mA cm−2 and low energy requirements), matching the values obtained by the state of the art of EOR electrocatalysts.