English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Decoding brain states on the intrinsic manifold of human brain dynamics across wakefulness and sleep

MPS-Authors
/persons/resource/persons208989

Deco,  Gustavo
Center for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain;
Catalan Institution for Research and Advanced Studies (ICREA), University Pompeu Fabra, Barcelona, Spain;
Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
School of Psychological Sciences, Monash University, Melbourne, Australia;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Queralt_2021.pdf
(Publisher version), 4MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Rué-Queralt, J., Stevner, A., Tagliazucchi, E., Laufs, H., Kringelbach, M. L., Deco, G., et al. (2021). Decoding brain states on the intrinsic manifold of human brain dynamics across wakefulness and sleep. Communications Biology, 4(1): 854. doi:10.1038/s42003-021-02369-7.


Cite as: https://hdl.handle.net/21.11116/0000-0009-258D-F
Abstract
Current state-of-the-art functional magnetic resonance imaging (fMRI) offers remarkable imaging quality and resolution, yet, the intrinsic dimensionality of brain dynamics in different states (wakefulness, light and deep sleep) remains unknown. Here we present a method to reveal the low dimensional intrinsic manifold underlying human brain dynamics, which is invariant of the high dimensional spatio-temporal representation of the neuroimaging technology. By applying this intrinsic manifold framework to fMRI data acquired in wakefulness and sleep, we reveal the nonlinear differences between wakefulness and three different sleep stages, and successfully decode these different brain states with a mean accuracy across participants of 96%. Remarkably, a further group analysis shows that the intrinsic manifolds of all participants share a common topology. Overall, our results reveal the intrinsic manifold underlying the spatiotemporal dynamics of brain activity and demonstrate how this manifold enables the decoding of different brain states such as wakefulness and various sleep stages.