English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Multigenic truncation of the semaphorin-plexin pathway by a germline chromothriptic rearrangement associated with Moebius syndrome

MPS-Authors
/persons/resource/persons50369

Kalscheuer,  Vera M.
Chromosome Rearrangements and Disease (Vera Kalscheuer), Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Nazaryan-Petersen_2019.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Nazaryan-Petersen, L., Oliveira, I. R., Mehrjouy, M. M., Mendez, J. M. M., Bak, M., Bugge, M., et al. (2019). Multigenic truncation of the semaphorin-plexin pathway by a germline chromothriptic rearrangement associated with Moebius syndrome. Human Mutation, 40(8), 1057-1062. doi:10.1002/humu.23775.


Cite as: https://hdl.handle.net/21.11116/0000-0009-2A6E-E
Abstract
Moebius syndrome (MBS) is a congenital disorder caused by paralysis of the facial and abducens nerves. Although a number of candidate genes have been suspected, so far only mutations in PLXND1 and REV3L are confirmed to cause MBS. Here, we fine mapped the breakpoints of a complex chromosomal rearrangement (CCR) 46,XY,t(7;8;11;13) in a patient with MBS, which revealed 41 clustered breakpoints with typical hallmarks of chromothripsis. Among 12 truncated protein-coding genes, SEMA3A is known to bind to the MBS-associated PLXND1. Intriguingly, the CCR also truncated PIK3CG, which in silico interacts with REVL3 encoded by the other known MBS-gene REV3L, and with the SEMA3A/PLXND1 complex via FLT1. Additional studies of other complex rearrangements may reveal whether the multiple breakpoints in germline chromothripsis may predispose to complex multigenic disorders.