English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Observation of the critical state to multiple-type Dirac semimetal phases in KMgBi

MPS-Authors
/persons/resource/persons260868

Liu,  D. F.
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons245678

Parkin,  S. S. P.       
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Liu, D. F., Wei, L. Y., Le, C. C., Wang, H. Y., Zhang, X., Kumar, N., et al. (2021). Observation of the critical state to multiple-type Dirac semimetal phases in KMgBi. Journal of Applied Physics, 129(23): 235109. doi:10.1063/5.0045466.


Cite as: https://hdl.handle.net/21.11116/0000-0009-2FBD-F
Abstract
Dirac semimetals are classified into different phases based on the types of Dirac fermions. Tuning the transition among different types of Dirac fermions in one system remains a challenge. Recently, KMgBi was predicted to be located at a critical state in which various types of Dirac fermions can be induced owing to the existence of a flatband. Here, we carried out systematic studies on the electronic structure of KMgBi single crystals by combining angle-resolve photoemission spectroscopy and scanning tunneling microscopy/spectroscopy. The flatband was clearly observed near the Fermi level. We also revealed a small bandgap of ∼20 meV between the flatband and the conduction band. These results demonstrate the critical states of KMgBi that transition among various types of Dirac fermions can be tuned in one system.