Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Imaging phonon-mediated hydrodynamic flow in WTe2

MPG-Autoren
/persons/resource/persons195511

Kumar,  Nitesh
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons220347

Gooth,  Johannes
Nanostructured Quantum Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126601

Felser,  Claudia
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Vool, U., Hamo, A., Varnavides, G., Wang, Y., Zhou, T. X., Kumar, N., et al. (2021). Imaging phonon-mediated hydrodynamic flow in WTe2. Nature Physics, 17, 1216-1220. doi:10.1038/s41567-021-01341-w.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-3DEF-7
Zusammenfassung
In the presence of interactions, electrons in condensed-matter systems can behave hydrodynamically, exhibiting phenomena associated with classical fluids, such as vortices and Poiseuille flow1–3. In most conductors, electron–electron interactions are minimized by screening effects, hindering the search for hydrodynamic materials; however, recently, a class of semimetals has been reported to exhibit prominent interactions4,5. Here we study the current flow in the layered semimetal tungsten ditelluride by imaging the local magnetic field using a nitrogen-vacancy defect in a diamond. We image the spatial current profile within three-dimensional tungsten ditelluride and find that it exhibits non-uniform current density, indicating hydrodynamic flow. Our temperature-resolved current profile measurements reveal a non-monotonic temperature dependence, with the strongest hydrodynamic effects at approximately 20 K. We also report ab initio calculations showing that electron–electron interactions are not explained by the Coulomb interaction alone, but are predominantly mediated by phonons. This provides a promising avenue in the search for hydrodynamic flow and prominent electron interactions in high-carrier-density materials.