Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Designing architectural materials : from granular form to functional granular material


Dierichs,  Karola       
Peter Fratzl, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

(Publisher version), 4MB

Supplementary Material (public)
There is no public supplementary material available

Dierichs, K., & Menges, A. (2021). Designing architectural materials: from granular form to functional granular material. Bioinspiration & Biomimetics, 16(6): 065010. doi:10.1088/1748-3190/ac2987.

Cite as: https://hdl.handle.net/21.11116/0000-0009-420C-0
Designed granular materials are a novel class of architectural material system. Following one of the key paradigms of designed matter, material form and material function are closely interrelated in these systems. In this context, the article aims to contribute a parametric particle design model as an interface for this interrelation. A granular material is understood as an aggregation of large numbers of individual particles between which only short-range repulsive contact forces are acting. Granular materials are highly pertinent material systems for architecture. Due to the fact that they can act both as a solid and a liquid, they can be recycled and reconfigured multiple times and are thus highly sustainable. Designed granular materials have the added potential that the function of the granular material can be calibrated through the definition of the particles' form. Designed granular materials in architecture are a nascent field of research. In physics they have been explored mainly with respect to different particle shapes. However, no coherent parametric particle design model of designed particle shapes for granular material systems in architecture has yet been established which considers both fabrication constraints and simulation requirements. The parametric particle design model proposed in this article has been based on a design system which has been developed through feasibility tests and simulations conducted in research and teaching. Based on this design system the parametric particle design model is developed integrating both fabrication constraints for architecture-scale particle systems and the geometric requirements of established simulation methods for granular materials. Initially the design system and related feasibility tests are presented. The parametric particle design model resulting from that is then described in detail. Directions of further research are discussed especially with respect to the integration of the parametric particle design model in 'inverse' design methods.