English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Spinodal Decomposition in Nanocrystalline Alloys

MPS-Authors
/persons/resource/persons249272

Zhou,  Xuyang
Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
The University of Alabama, Department of Metallurgical Materials Engineering, 35487 Tuscaloosa, AL, USA;

/persons/resource/persons125330

Raabe,  Dierk
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Zhou, X., Kamachali, R. D., Boyce, B. L., Clark, B. G., Raabe, D., & Thompson, G. B. (2021). Spinodal Decomposition in Nanocrystalline Alloys. Acta Materialia, 215: 117054. doi:10.1016/j.actamat.2021.117054.


Cite as: https://hdl.handle.net/21.11116/0000-0009-726E-C
Abstract
For more than half a century, spinodal decomposition has been a key phenomenon in considering the formation of secondary phases in alloys. The most prominent aspect of the spinodal phenomenon is the lack of an energy barrier on its transformation pathway, offering an alternative to the nucleation and growth mechanism. The classical description of spinodal decomposition often neglects the influence of defects, such as grain boundaries, on the transformation because the innate ability for like-atoms to cluster is assumed to lead the process. Nevertheless, in nanocrystalline alloys, with a high population of grain boundaries with diverse characters, the structurally heterogeneous landscape can greatly influence the chemical decomposition behavior. Combining atom-probe tomography, precession electron diffraction and density-based phase-field simulations, we address how grain boundaries contribute to the temporal evolution of chemical decomposition within the miscibility gap of a Pt-Au nanocrystalline system. We found that grain boundaries can actually have their own miscibility gaps profoundly altering the spinodal decomposition in nanocrystalline alloys. A complex realm of multiple interfacial states, ranging from competitive grain boundary segregation to barrier-free low-dimensional interfacial decomposition, occurs with a dependency upon the grain boundary character. © 2021