Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Pathologically stiff erythrocytes impede contraction of blood clots

MPG-Autoren
/persons/resource/persons266561

Woods,  Eric
Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Tutwiler, V., Litvinov, R. I., Protopopova, A., Nagaswami, C., Villa, C., Woods, E., et al. (2021). Pathologically stiff erythrocytes impede contraction of blood clots. Journal of Thrombosis and Haemostasis, 19(8), 1990-2001. doi:10.1111/jth.15407.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-6801-1
Zusammenfassung
Background: Blood clot contraction, volume shrinkage of the clot, is driven by platelet contraction and accompanied by compaction of the erythrocytes and their gradual shape change from biconcave to polyhedral, with the resulting cells named polyhedrocytes. Objectives: Here, we examined the role of erythrocyte rigidity on clot contraction and erythrocyte shape transformation. Methods: We used an optical tracking methodology that allowed us to quantify changes in contracting clot size over time. Results and conclusions: Erythrocyte rigidity has been shown to be increased in sickle cell disease (SCD), and in our experiments erythrocytes from SCD patients were 4-fold stiffer than those from healthy subjects. On average, the final extent of clot contraction was reduced by 53 in the clots from the blood of patients with SCD compared to healthy individuals, and there was significantly less polyhedrocyte formation. To test if this reduction in clot contraction was due to the increase in erythrocyte rigidity, we used stiffening of erythrocytes via chemical cross-linking (glutaraldehyde), rigidifying Wrightb antibodies (Wrb), and naturally more rigid llama ovalocytes. Results revealed that stiffening erythrocytes result in impaired clot contraction and fewer polyhedrocytes. These results demonstrate the role of erythrocyte rigidity in the contraction of blood clots and suggest that the impaired clot contraction/shrinkage in SCD is due to the reduced erythrocyte deformability, which may be an underappreciated mechanism that aggravates obstructiveness of erythrocyte-rich (micro)thrombi in SCD. © 2021 International Society on Thrombosis and Haemostasis