English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

New insights into high-temperature deformation and phase transformation mechanisms of lamellar structures in high Nb-containing TiAl alloys

MPS-Authors
/persons/resource/persons225093

He,  Junyang
Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Song, L., Appel, F., Wang, L., Oehring, M., Hu, X., Stark, A., et al. (2020). New insights into high-temperature deformation and phase transformation mechanisms of lamellar structures in high Nb-containing TiAl alloys. Acta Materialia, 186, 575-586. doi:10.1016/j.actamat.2020.01.021.


Cite as: http://hdl.handle.net/21.11116/0000-0009-6A0E-2
Abstract
The paper describes the microstructure evolution by high-temperature compression of a high Nb-containing TiAl alloy. The paper extends a previous publication [Song, et al. Intermetallics 109 (2019) 91–96], in which a unique twin-like morphology in the α2 (Ti3Al) phase was reported. However, the origin of these structures could not be clarified without doubt. The present study is focused on phase transformations that in this multiphase alloy can be associated with deformation. Particular attention is paid to local transformations of the α2 phase into O phase or ω-related phases, which, because of structural and chemical similarity of these phases with α2, can easily occur and could mistakenly be considered as a twin structure. The details of the atomic processes involved are elucidated by electron microscopy. Given the large shufflings and the atomic site interchanges required for the operation of this twinning system, it is concluded that twinning of the α2 phase is a diffusive-displacive process. Within the α2 phase, ωo is heterogeneously nucleated. The nucleation sites are defect-rich areas, which are subjected to high local stresses. The study strongly emphasizes the close relationship between high-temperature deformation and phase transformations in multiphase titanium aluminide alloys. © 2020 Acta Materialia Inc.