English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Insight into the Mechanisms of High Activity and Stability of Iridium Supported on Antimony-Doped Tin Oxide Aerogel for Anodes of Proton Exchange Membrane Water Electrolyzers

MPS-Authors
/persons/resource/persons188367

Kasian,  Olga
Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
Helmholtz Zentrum Berlin, Helmholtz-Institute Erlangen-Nürnberg, 14109 Berlin, Germany;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Saveleva, V. A., Wang, L., Kasian, O., Batuk, M., Hadermann, J., Gallet, J.-J., et al. (2020). Insight into the Mechanisms of High Activity and Stability of Iridium Supported on Antimony-Doped Tin Oxide Aerogel for Anodes of Proton Exchange Membrane Water Electrolyzers. ACS Catalysis, 10(4), 2508-2516. doi:10.1021/acscatal.9b04449.


Cite as: https://hdl.handle.net/21.11116/0000-0009-6735-8
Abstract
The use of high amounts of iridium in industrial proton exchange membrane water electrolyzers (PEMWE) could hinder their widespread use for the decarbonization of society with hydrogen. Nonthermally oxidized Ir nanoparticles supported on antimony-doped tin oxide (SnO2:Sb, ATO) aerogel allow decreasing the use of the precious metal by more than 70 while enhancing the electrocatalytic activity and stability. To date, the origin of these benefits remains unknown. Here, we present clear evidence of the mechanisms that lead to the enhancement of the electrochemical properties of the catalyst. Operando near-ambient pressure X-ray photoelectron spectroscopy on membrane electrode assemblies reveals a low degree of Ir oxidation, attributed to the oxygen spill-over from Ir to SnO2:Sb. Furthermore, the formation of highly unstable Ir(III) species is mitigated, while the decrease of Ir dissolution in Ir/SnO2:Sb is confirmed by inductively coupled plasma mass spectrometry. The mechanisms that lead to the high activity and stability of Ir catalysts supported on SnO2:Sb aerogel for PEMWE are thus unveiled. Copyright © 2020 American Chemical Society.