Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Polynomial filter dingonalization of large Floquet unitary operators


Luitz,  David J.
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

(Preprint), 625KB

Supplementary Material (public)
There is no public supplementary material available

Luitz, D. J. (2021). Polynomial filter dingonalization of large Floquet unitary operators. SciPost Physics, 11(2): 021. doi:10.21468/SciPostPhys.11.2.021.

Cite as: https://hdl.handle.net/21.11116/0000-0009-465C-2
Periodically driven quantum many-body systems play a central role for our understanding of nonequilibrium phenomena. For studies of quantum chaos, thermalization, many-body localization and time crystals, the properties of eigenvectors and eigenvalues of the unitary evolution operator, and their scaling with physical system size L are of interest. While for static systems, powerful methods for the partial diagonalization of the Hamiltonian were developed, the unitary eigenproblem remains daunting. In this paper, we introduce a Krylov space diagonalization method to obtain exact eigenpairs of the unitary Floquet operator with eigenvalue closest to a target on the unit circle. Our method is based on a complex polynomial spectral transformation given by the geometric sum, leading to rapid convergence of the Arnoldi algorithm. We demonstrate that our method is much more efficient than the shift invert method in terms of both runtime and memory requirements, pushing the accessible system sizes to the realm of 20 qubits, with Hilbert space dimensions >= 10(6).