Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Chemical Vapor Deposition of Hollow Graphitic Spheres for Improved Electrochemical Durability

MPG-Autoren
/persons/resource/persons198542

Knossalla,  J.
Research Department Schüth, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons211571

Jalalpoor,  D.
Research Department Schüth, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons266176

Hopf,  A.
Research Department Schüth, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58985

Schüth,  F.
Research Department Schüth, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Knossalla, J., Mielby, J., Göhl, D., Wang, F. R., Jalalpoor, D., Hopf, A., et al. (2021). Chemical Vapor Deposition of Hollow Graphitic Spheres for Improved Electrochemical Durability. ACS Applied Energy Materials, 4(6), 5840-5847. doi:10.1021/acsaem.1c00643.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-592A-5
Zusammenfassung
The wet-chemical synthesis of hollow graphitic spheres, a highly defined model catalyst support for electrocatalytic processes, is laborious and not scalable, which hampers potential applications. Here, we present insights into the chemical vapor deposition (CVD) of ferrocene as a simple, scalable method to synthesize hollow graphitic spheres (HGScvd). During the CVD process, iron and carbon are embedded in the pores of a mesoporous silica template. In a subsequent annealing step, iron facilitates the synthesis of highly ordered graphite structures. We found that the applied temperature treatment allows for controlling of the degree of graphitization and the textural properties of HGScvd. Further, we demonstrate that platinum loaded on HGScvd is significantly more stable during electrochemical degradation protocols than catalysts based on commercial high surface area carbons. The established CVD process allows the scalable synthesis of highly defined HGS and therefore removes one obstacle for a broader application.