Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Hydroxyl Radical Production by Air Pollutants in Epithelial Lining Fluid Governed by Interconversion and Scavenging of Reactive Oxygen Species

MPG-Autoren
/persons/resource/persons222959

Lelieveld,  Steven
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons230415

Wilson,  Jake
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons266099

Dovrou,  Eleni
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons266101

Mishra,  Ashmi
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101189

Pöschl,  Ulrich
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons140352

Berkemeier,  Thomas
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lelieveld, S., Wilson, J., Dovrou, E., Mishra, A., Lakey, P. S. J., Shiraiwa, M., et al. (2021). Hydroxyl Radical Production by Air Pollutants in Epithelial Lining Fluid Governed by Interconversion and Scavenging of Reactive Oxygen Species. Environmental Science & Technology, 55. doi:10.1021/acs.est.1c03875.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-5605-1
Zusammenfassung
Air pollution is a major risk factor for human health. Chemical reactions in the epithelial lining fluid (ELF) of the human respiratory tract result in the formation of reactive oxygen species (ROS), which can lead to oxidative stress and adverse health effects. We use kinetic modeling to quantify the effects of fine particulate matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2) on ROS formation, interconversion, and reactivity, and discuss different chemical metrics for oxidative stress, such as cumulative production of ROS and hydrogen peroxide (H2O2) to hydroxyl radical (OH) conversion. All three air pollutants produce ROS that accumulate in the ELF as H2O2, which serves as reservoir for radical species. At low PM2.5 concentrations (<10 μg m–3), we find that less than 4% of all produced H2O2 is converted into highly reactive OH, while the rest is intercepted by antioxidants and enzymes that serve as ROS buffering agents. At elevated PM2.5 concentrations (>10 μg m–3), however, Fenton chemistry overwhelms the ROS buffering effect and leads to a tipping point in H2O2 fate, causing a strong nonlinear increase in OH production. This shift in ROS chemistry and the enhanced OH production provide a tentative mechanistic explanation for how the inhalation of PM2.5 induces oxidative stress and adverse health effects.