English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Euclid Preparation. XIV. The Complete Calibration of the Color–Redshift Relation (C3R2) survey: data release 3

MPS-Authors
/persons/resource/persons4759

Bender,  R.
Optical and Interpretative Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons128614

Bodendorf,  C.
Optical and Interpretative Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons23147

Grupp,  F.
Optical and Interpretative Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons202823

Raison,  F.
Optical and Interpretative Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons18398

Saglia,  R.
Optical and Interpretative Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons4654

Fabricius,  M.
Optical and Interpretative Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons22336

Graciá-Carpio,  J.
Infrared and Submillimeter Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons18611

Sanchez,  A. G.
Optical and Interpretative Astronomy, MPI for Extraterrestrial Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Stanford, S. A., Masters, D., Darvish, B., Stern, D., Cohen, J. G., Capak, P., et al. (2021). Euclid Preparation. XIV. The Complete Calibration of the Color–Redshift Relation (C3R2) survey: data release 3. Astrophysical Journal Supplement Series, 256(1): 9. doi:10.3847/1538-4365/ac0833.


Cite as: https://hdl.handle.net/21.11116/0000-0009-5649-5
Abstract
The Complete Calibration of the Color–Redshift Relation (C3R2) survey is obtaining spectroscopic redshifts in order to map the relation between galaxy color and redshift to a depth of i ∼ 24.5 (AB). The primary goal is to enable sufficiently accurate photometric redshifts for Stage IV dark energy projects, particularly Euclid and the Nancy Grace Roman Space Telescope (Roman), which are designed to constrain cosmological parameters through weak lensing. We present 676 new high-confidence spectroscopic redshifts obtained by the C3R2 survey in the 2017B–2019B semesters using the DEIMOS, LRIS, and MOSFIRE multiobject spectrographs on the Keck telescopes. Combined with the 4454 redshifts previously published by this project, the C3R2 survey has now obtained and published 5130 high-quality galaxy spectra and redshifts. If we restrict consideration to only the 0.2 < zp < 2.6 range of interest for the Euclid cosmological goals, then with the current data release, C3R2 has increased the spectroscopic redshift coverage of the Euclid color space from 51% (as reported by Masters et al.) to the current 91%. Once completed and combined with extensive data collected by other spectroscopic surveys, C3R2 should provide the spectroscopic calibration set needed to enable photometric redshifts to meet the cosmology requirements for Euclid, and make significant headway toward solving the problem for Roman.