日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Neural excitability and sensory input determine intensity perception with opposing directions in initial cortical responses

MPS-Authors
/persons/resource/persons213896

Stephani,  Tilman
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

Hodapp,  Alice
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons213898

Jamshidi Idaji,  Mina
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Machine Learning Group, TU Berlin, Germany;

/persons/resource/persons20065

Villringer,  Arno
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Berlin School of Mind and Brain, Humboldt University Berlin, Germany;
Clinic for Cognitive Neurology, University of Leipzig, Germany;

/persons/resource/persons201758

Nikulin,  Vadim V.
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Institute of Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

Stephani_2021.pdf
(出版社版), 3MB

付随資料 (公開)
There is no public supplementary material available
引用

Stephani, T., Hodapp, A., Jamshidi Idaji, M., Villringer, A., & Nikulin, V. V. (2021). Neural excitability and sensory input determine intensity perception with opposing directions in initial cortical responses. eLife, 10:. doi:10.7554/eLife.67838.


引用: https://hdl.handle.net/21.11116/0000-0009-5848-4
要旨
Perception of sensory information is determined by stimulus features (e.g., intensity) and instantaneous neural states (e.g., excitability). Commonly, it is assumed that both are reflected similarly in evoked brain potentials, that is, larger amplitudes are associated with a stronger percept of a stimulus. We tested this assumption in a somatosensory discrimination task in humans, simultaneously assessing (i) single-trial excitatory post-synaptic currents inferred from short-latency somatosensory evoked potentials (SEPs), (ii) pre-stimulus alpha oscillations (8-13 Hz), and (iii) peripheral nerve measures. Fluctuations of neural excitability shaped the perceived stimulus intensity already during the very first cortical response (at ~20 ms) yet demonstrating opposite neural signatures as compared to the effect of presented stimulus intensity. We reconcile this discrepancy via a common framework based on the modulation of electro-chemical membrane gradients linking neural states and responses, which calls for reconsidering conventional interpretations of brain potential magnitudes in stimulus intensity encoding.