English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Cystatin B Involvement in Synapse Physiology of Rodent Brains and Human Cerebral Organoids

MPS-Authors
/persons/resource/persons189184

Cappello,  Silvia
Max Planck Research Group Developmental Neurobiology (Silvia Cappello), Max Planck Institute of Psychiatry, Max Planck Society;

/persons/resource/persons222059

Di Giaimo,  Rossella
Max Planck Research Group Developmental Neurobiology (Silvia Cappello), Max Planck Institute of Psychiatry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Penns, E., Cerciello, A., Chambery, A., Russo, R., Cernilogar, F. M., Pedone, E. M., et al. (2019). Cystatin B Involvement in Synapse Physiology of Rodent Brains and Human Cerebral Organoids. FRONTIERS IN MOLECULAR NEUROSCIENCE, 12: 195. doi:10.3389/fnmol.2019.00195.


Cite as: https://hdl.handle.net/21.11116/0000-0009-6210-6
Abstract
Cystatin B (CSTB) is a ubiquitous protein belonging to a superfamily of protease inhibitors. CSTB may play a critical role in brain physiology because its mutations cause progressive myoclonic epilepsy-1A (EPM1A), the most common form of progressive myoclonic epilepsy. However, the molecular mechanisms underlying the role of CSTB in the central nervous system (CNS) are largely unknown. To investigate the possible involvement of CSTB in the synaptic plasticity, we analyzed its expression in synaptosomes as a model system in studying the physiology of the synaptic regions of the CNS. We found that CSTB is not only present in the synaptosomes isolated from rat and mouse brain cortex, but also secreted into the medium in a depolarization-controlled manner. In addition, using biorthogonal noncanonical amino acid tagging (BONCAT) procedure, we demonstrated, for the first time, that CSTB is locally synthesized in the synaptosomes. The synaptic localization of CSTB was confirmed in a human 3D model of cortical development, namely cerebral organoids. Altogether, these results suggest that CSTB may play a role in the brain plasticity and open a new perspective in studying the involvement of CSTB deregulation in neurodegenerative and neuropsychiatric diseases.