English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Dynamic transformation of cubic copper catalysts during CO2 electroreduction and its impact on catalytic selectivity

MPS-Authors
/persons/resource/persons227599

Grosse,  Philipp
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons244720

Yoon,  Aram
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons227610

Rettenmaier,  Clara
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons232519

Herzog,  Antonia
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons244748

Chee,  See Wee
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22020

Roldan Cuenya,  Beatriz
Interface Science, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Supplementary Material (public)
There is no public supplementary material available
Citation

Grosse, P., Yoon, A., Rettenmaier, C., Herzog, A., Chee, S. W., & Roldan Cuenya, B. (2021). Dynamic transformation of cubic copper catalysts during CO2 electroreduction and its impact on catalytic selectivity. Nature Communications, 12: 6736. doi:10.1038/s41467-021-26743-5.


Cite as: http://hdl.handle.net/21.11116/0000-0009-5D8E-0
Abstract
To rationally design effective and stable catalysts for energy conversion applications, we need to understand how they transform under reaction conditions and reveal their underlying structure-property relationships. This is especially important for catalysts used in the elec- troreduction of carbon dioxide where product selectivity is sensitive to catalyst structure. Here, we present real-time electrochemical liquid cell transmission electron microscopy studies showing the restructuring of copper(I) oxide cubes during reaction. Fragmentation of the solid cubes, re-deposition of new nanoparticles, catalyst detachment and catalyst aggregation are observed as a function of the applied potential and time. Using cubes with different initial sizes and loading, we further correlate this dynamic morphology with the catalytic selectivity through time-resolved scanning electron microscopy measurements and product analysis. These comparative studies reveal the impact of nanoparticle re-deposition and detachment on the catalyst reactivity, and how the increased surface metal loading created by re-deposited nanoparticles can lead to enhanced C2+selectivity and stability.