English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Potential mimicry of viral and pancreatic β cell antigens through non-spliced and cis-spliced zwitter epitope candidates in Type 1 Diabetes

MPS-Authors
/persons/resource/persons243281

Mansurkhodzhaev,  A.
Research Group of Quantitative and System Biology, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons208298

Liepe,  J.
Research Group of Quantitative and System Biology, MPI for Biophysical Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

3346652.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Mishto, M., Mansurkhodzhaev, A., Rodriguez-Calvo, T., & Liepe, J. (2021). Potential mimicry of viral and pancreatic β cell antigens through non-spliced and cis-spliced zwitter epitope candidates in Type 1 Diabetes. Frontiers in Immunology, 12: 656451. doi:10.3389/fimmu.2021.656451.


Cite as: https://hdl.handle.net/21.11116/0000-0009-5C27-5
Abstract
Increasing evidence suggests that post-translational peptide splicing can play a role in the immune response under pathological conditions. This seems to be particularly relevant in Type 1 Diabetes (T1D) since post-translationally spliced epitopes derived from T1D-associated antigens have been identified among those peptides bound to Human Leucocyte Antigen (HLA) class I and II complexes. Their immunogenicity has been confirmed through CD4+ and CD8+ T cell-mediated responses in T1D patients. Spliced peptides theoretically have a large sequence variability. This might increase the frequency of viral-human zwitter peptides, i.e. peptides that share a complete sequence homology irrespective of whether they originate from human or viral antigens, thereby impinging upon the discrimination between self and non-self antigens by T cells. This might increase the risk of autoimmune responses triggered by viral infections. Since enteroviruses and other viral infections have historically been associated with T1D, we investigated whether cis-spliced peptides derived from selected viruses might be able to trigger CD8+ T cell-mediated autoimmunity. We computed in silico viral-human non-spliced and cis-spliced zwitter epitope candidates, and prioritized peptide candidates based on: (i) their binding affinity to HLA class I complexes, (ii) human pancreatic β cell and medullary thymic epithelial cell (mTEC) antigens’ mRNA expression, (iii) antigen association with T1D, and (iv) potential hotspot regions in those antigens. Neglecting potential T cell receptor (TCR) degeneracy, no viral-human zwitter non-spliced peptide was found to be an optimal candidate to trigger a virus-induced CD8+ T cell response against human pancreatic β cells. Conversely, we identified some zwitter peptide candidates, which may be produced by proteasome-catalyzed peptide splicing, and might increase the likelihood of pancreatic β cells recognition by virus-specific CD8+ T cell clones, therefore promoting β cell destruction in the context of viral infections.