Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Probing the large-scale structure of the universe through gravitational-wave observations

MPG-Autoren
/persons/resource/persons266282

Wu,  Shichao
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2110.08978.pdf
(Preprint), 334KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Shao, X., Cao, Z., Fan, X., & Wu, S. (2022). Probing the large-scale structure of the universe through gravitational-wave observations. Research in Astronomy and Astrophysics, 22(1): 015006. doi:10.1088/1674-4527/ac32b4.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-5F14-7
Zusammenfassung
The improvements in the sensitivity of the gravitational wave (GW) network
enable the detection of several large redshift GW sources by third-generation
GW detectors. These advancements provide an independent method to probe the
large-scale structure of the universe by using the clustering of the binary
black holes. The black hole catalogs are complementary to the galaxy catalogs
because of large redshifts of GW events, which may imply that binary black
holes (BBHs) are a better choice than galaxies to probe the large-scale
structure of the universe and cosmic evolution over a large redshift range. To
probe the large-scale structure, we used the sky position of the binary black
holes observed by third-generation GW detectors to calculate the angular
correlation function (ACF) and the bias factor of the population of binary
black holes. This method is also statistically significant as 5000 BBHs are
simulated. Moreover, for the third-generation GW detectors, we found that the
bias factor can be recovered to within 33$\%$ with an observational time of ten
years. This method only depends on the GW source-location posteriors; hence, it
can be an independent method to reveal the formation mechanisms and origin of
the BBH mergers compared to the electromagnetic method.