Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Exploration of the high-redshift universe enabled by THESEUS


Ciardi,  B.
Computational Structure Formation, MPI for Astrophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Tanvir, N. R., Le Floc’h, E., Christensen, L., Caruana, J., Salvaterra, R., Ghirlanda, G., et al. (2021). Exploration of the high-redshift universe enabled by THESEUS. Experimental Astronomy, 52, 219-244. doi:10.1007/s10686-021-09778-w.

Cite as: https://hdl.handle.net/21.11116/0000-0009-5FCF-5
At peak, long-duration gamma-ray bursts are the most luminous sources of electromagnetic radiation known. Since their progenitors are massive stars, they provide a tracer of star formation and star-forming galaxies over the whole of cosmic history. Their bright power-law afterglows provide ideal backlights for absorption studies of the interstellar and intergalactic medium back to the reionization era. The proposed THESEUS mission is designed to detect large samples of GRBs at z > 6 in the 2030s, at a time when supporting observations with major next generation facilities will be possible, thus enabling a range of transformative science. THESEUS will allow us to explore the faint end of the luminosity function of galaxies and the star formation rate density to high redshifts; constrain the progress of re-ionisation beyond z≳6; study in detail early chemical enrichment from stellar explosions, including signatures of Population III stars; and potentially characterize the dark energy equation of state at the highest redshifts.