English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Mesoporous one-component gold microshells as 3D SERS substrates

MPS-Authors
/persons/resource/persons265857

Vikulina,  Anna
Rumiana Dimova, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Article.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Vikulina, A., Stetsyura, I. Y., Onses, M. S., Yilmaz, E., Skirtach, A. G., & Volodkin, D. (2021). Mesoporous one-component gold microshells as 3D SERS substrates. Biosensors, 11(10): 380. doi:10.3390/bios11100380.


Cite as: https://hdl.handle.net/21.11116/0000-0009-6270-A
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful analytical tool for label-free analysis that has found a broad spectrum of applications in material, chemical, and biomedical sciences. In recent years, a great interest has been witnessed in the rational design of SERS substrates to amplify Raman signals and optionally allow for the selective detection of analytes, which is especially essential and challenging for biomedical applications. In this study, hard templating of noble metals is proposed as a novel approach for the design of one-component tailor-made SERS platforms. Porous Au microparticles were fabricated via dual ex situ adsorption of Au nanoparticles and in situ reduction of HAuCl4 on mesoporous sacrificial microcrystals of vaterite CaCO3. Elimination of the microcrystals at mild conditions resulted in the formation of stable mesoporous one-component Au microshells. SERS performance of the microshells at very low 0.4 µW laser power was probed using rhodamine B and bovine serum albumin showing enhancement factors of 2 × 108 and 8 × 108, respectively. The proposed strategy opens broad avenues for the design and scalable fabrication of one-component porous metal particles that can serve as superior SERS platforms possessing both excellent plasmonic properties and the possibility of selective inclusion of analyte molecules and/or SERS nanotags for highly specific SERS analysis.