English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

TMDs as a platform for spin liquid physics: A strong coupling study of twisted bilayer WSe2

MPS-Authors
/persons/resource/persons22028

Rubio,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;
Center for Computational Quantum Physics, Simons Foundation Flatiron Institute;
Nano-Bio Spectroscopy Group, Departamento de Fisica de Materiales, Universidad del País Vasco, UPV/EHU;

/persons/resource/persons245033

Kennes,  D. M.
Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA-Fundamentals of Information Technology;
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

5.0077901.pdf
(Publisher version), 8MB

Supplementary Material (public)

supp_clean.pdf
(Supplementary material), 2MB

Citation

Kiese, D., He, Y., Hickey, C., Rubio, A., & Kennes, D. M. (2022). TMDs as a platform for spin liquid physics: A strong coupling study of twisted bilayer WSe2. APL Materials, 10(3): 031113. doi:10.1063/5.0077901.


Cite as: https://hdl.handle.net/21.11116/0000-0009-6447-7
Abstract
The advent of twisted moiré heterostructures as a playground for strongly correlated electron physics has led to a plethora of experimental and theoretical efforts seeking to unravel the nature of the emergent superconducting and insulating states. Among these layered compositions of two-dimensional materials, transition metal dichalcogenides are now appreciated as highly tunable platforms to simulate reinforced electronic interactions in the presence of low-energy bands with almost negligible bandwidth. Here, we focus on the twisted homobilayer WSe2 and the insulating phase at half-filling of the flat bands reported therein. More specifically, we explore the possibility of realizing quantum spin liquid (QSL) physics on the basis of a strong coupling description, including up to second-nearest neighbor Heisenberg couplings J1 and J2 as well as Dzyaloshinskii–Moriya (DM) interactions. Mapping out the global phase diagram as a function of an out-of-plane displacement field, we indeed find evidence for putative QSL states, albeit only close to SU(2) symmetric points. In the presence of finite DM couplings and XXZ anisotropy, long-range order is predominantly present with a mix of both commensurate and incommensurate magnetic phases.