Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Curiosity in exploring chemical spaces: Intrinsic rewards for deep molecular reinforcement learning

MPG-Autoren
/persons/resource/persons266279

Krenn,  Mario
Department of Computer Science, University of Toronto;
Krenn Research Group, Marquardt Division, Max Planck Institute for the Science of Light, Max Planck Society;
Vector Institute, Toronto, Ontario;
Department of Chemistry, University of Toronto, Toronto, Canada;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Ergänzendes Material (frei zugänglich)

2020_Thiede.png
(Ergänzendes Material), 40KB

Zitation

Thiede, L. A., Krenn, M., Nigam, A., & Aspuru-Guzik, A. (2022). Curiosity in exploring chemical spaces: Intrinsic rewards for deep molecular reinforcement learning. Machine Learning: Science and Technology, (3): 035008. doi:10.1088/2632-2153/ac7ddc.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-83CD-C
Zusammenfassung
Computer-aided design of molecules has the potential to disrupt the field of drug and material discovery. Machine learning, and deep learning, in particular, have been topics where the field has been developing at a rapid pace. Reinforcement learning is a particularly promising approach since it allows for molecular design without prior knowledge. However, the search space is vast and efficient exploration is desirable when using reinforcement learning agents. In this study, we propose an algorithm to aid efficient exploration. The algorithm is inspired by a concept known in the literature as curiosity. We show on three benchmarks that a curious agent finds better performing molecules. This indicates an exciting new research direction for reinforcement learning agents that can explore the chemical space out of their own motivation. This has the potential to eventually lead to unexpected new molecules that no human has thought about so far.