English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Machine learning-based and experimentally validated optimal adhesive fibril designs

MPS-Authors
/persons/resource/persons203145

Son,  Donghoon
External Organizations;
Dept. Physical Intelligence, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons259774

Liimatainen,  Ville
External Organizations;
Dept. Physical Intelligence, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons140424

Sitti,  Metin
External Organizations;
Dept. Physical Intelligence, Max Planck Institute for Intelligent Systems, Max Planck Society;
Dept. of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Son, D., Liimatainen, V., & Sitti, M. (2021). Machine learning-based and experimentally validated optimal adhesive fibril designs. Small, 17(39): 2102867. doi:10.1002/smll.202102867.


Cite as: http://hdl.handle.net/21.11116/0000-0009-6A44-4
Abstract
There is no abstract available