English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Direct Measurement of Helicoid Surface States in RhSi Using Nonlinear Optics

MPS-Authors
/persons/resource/persons201263

Manna,  Kaustuv
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126541

Borrmann,  Horst
Horst Borrmann, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126601

Felser,  Claudia
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Rees, D., Lu, B., Sun, Y., Manna, K., Özgür, R., Subedi, S., et al. (2021). Direct Measurement of Helicoid Surface States in RhSi Using Nonlinear Optics. Physical Review Letters, 127(15): 157405, pp. 1-6. doi:10.1103/PhysRevLett.127.157405.


Cite as: https://hdl.handle.net/21.11116/0000-0009-6ABF-A
Abstract
Despite the fundamental nature of the edge state in topological physics, direct measurement of electronic and optical properties of the Fermi arcs of topological semimetals has posed a significant experimental challenge, as their response is often overwhelmed by the metallic bulk. However, laser-driven currents carried by surface and bulk states can propagate in different directions in nonsymmorphic crystals, allowing for the two components to be easily separated. Motivated by a recent theoretical prediction G. Chang et al., Phys. Rev. Lett. 124, 166404 (2020), we have measured the linear and circular photogalvanic effect currents deriving from the Fermi arcs of the nonsymmorphic, chiral Weyl semimetal RhSi over the 0.45-1.1 eV incident photon energy range. Our data are in good agreement with the predicted spectral shape of the circular photogalvanic effect as a function of photon energy, although the direction of the surface photocurrent departed from the theoretical expectation over the energy range studied. Surface currents arising from the linear photogalvanic effect were observed as well, with the unexpected result that only two of the six allowed tensor element were required to describe the measurements, suggesting an approximate emergent mirror symmetry inconsistent with the space group of the crystal.