English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer

MPS-Authors
/persons/resource/persons260984

Bedoya-Pinto,  Amilcar       
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons260870

Ji,  Jing-Rong
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;
International Max Planck Research School for Science and Technology of Nano-Systems, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons260876

Pandeya,  Avanindra K.
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;
International Max Planck Research School for Science and Technology of Nano-Systems, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons259921

Sessi,  Paolo
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

Chang,  Kai
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons245678

Parkin,  Stuart S. P.       
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

2006.07605.pdf
(Preprint), 703KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Bedoya-Pinto, A., Ji, J.-R., Pandeya, A. K., Gargiani, P., Valvidares, M., Sessi, P., et al. (2021). Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science, 374, 616-620. doi:10.1126/science.abd5146.


Cite as: https://hdl.handle.net/21.11116/0000-0009-6B89-5
Abstract
The physics and universality scaling of phase transitions in low-dimensional systems has historically been a topic of great interest. Recently, two-dimensional (2D) materials exhibiting intriguing long-range magnetic order have been in the spotlight. Although an out-of-plane anisotropy has been shown to stabilize 2D magnetic order, the demonstration of a 2D magnet with in-plane rotational symmetry has remained elusive. We constructed a nearly ideal easy-plane system, a single CrCl3 monolayer on graphene/6H-SiC(0001), and observed robust ferromagnetic ordering with critical scaling characteristic of a 2D-XY system. These observations indicate the realization of a finite-size Berezinskii-Kosterlitz-Thouless phase transition in a large-area, quasi–free-standing van der Waals monolayer magnet with an XY universality class. This offers a material platform to host 2D superfluid spin transport and topological magnetic textures.