English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Pupillometry tracks cognitive load and salience network activity in a working memory functional magnetic resonance imaging task

MPS-Authors
/persons/resource/persons262036

Fietz,  Julia
Dept. Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Max Planck Society;
IMPRS Translational Psychiatry, Max Planck Institute of Psychiatry, Max Planck Society;

/persons/resource/persons262423

Pöhlchen,  Dorothee
Dept. Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Max Planck Society;
IMPRS Translational Psychiatry, Max Planck Institute of Psychiatry, Max Planck Society;

/persons/resource/persons262062

Binder,  Florian
Dept. Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Max Planck Society;
IMPRS Translational Psychiatry, Max Planck Institute of Psychiatry, Max Planck Society;

/persons/resource/persons80295

Czisch,  Michael
Max Planck Institute of Psychiatry, Max Planck Society;

/persons/resource/persons80505

Sämann,  Philipp G.
Max Planck Institute of Psychiatry, Max Planck Society;

/persons/resource/persons80538

Spoormaker,  Victor I.
Dept. Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Fietz, J., Pöhlchen, D., Binder, F., Czisch, M., Sämann, P. G., & Spoormaker, V. I. (2021). Pupillometry tracks cognitive load and salience network activity in a working memory functional magnetic resonance imaging task. HUMAN BRAIN MAPPING. doi:10.1002/hbm.25678.


Cite as: https://hdl.handle.net/21.11116/0000-0009-6BD8-C
Abstract
The diameter of the human pupil tracks working memory processing and is associated with activity in the frontoparietal network. At the same time, recent neuroimaging research has linked human pupil fluctuations to activity in the salience network. In this combined functional magnetic resonance imaging (fMRI)/pupillometry study, we recorded the pupil size of healthy human participants while they performed a blockwise organized working memory task (N-back) inside an MRI scanner in order to monitor the pupil fluctuations associated neural activity during working memory processing. We first confirmed that mean pupil size closely followed working memory load. Combining this with fMRI data, we focused on blood oxygen level dependent (BOLD) correlates of mean pupil size modeled onto the task blocks as a parametric modulation. Interrogating this modulated task regressor, we were able to retrieve the frontoparietal network. Next, to fully exploit the within-block dynamics, we divided the blocks into 1 s time bins and filled these with corresponding pupil change values (first-order derivative of pupil size). We found that pupil change within N-back blocks was positively correlated with BOLD amplitudes in the areas of the salience network (namely bilateral insula, and anterior cingulate cortex). Taken together, fMRI with simultaneous measurement of pupil parameters constitutes a valuable tool to dissect working memory subprocesses related to both working memory load and salience of the presented stimuli.