Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Rhodium nanoparticles supported on covalent triazine-based frameworks as re-usable catalyst for benzene hydrogenation and hydrogen evolution reaction

MPG-Autoren
/persons/resource/persons76195

Thomas,  Jörg
Structure and Nano-/ Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Siebels, M., Schlüsener, C., Thomas, J., Xiao, Y.-X., Yang, X.-Y., & Janiak, C. (2019). Rhodium nanoparticles supported on covalent triazine-based frameworks as re-usable catalyst for benzene hydrogenation and hydrogen evolution reaction. Journal of Materials Chemistry A, 7(19), 11934-11943. doi:10.1039/c8ta12353e.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-738F-5
Zusammenfassung
Metal nanoparticles (M-NPs) of ruthenium, rhodium, iridium and platinum were synthesized and supported on covalent triazine-based framework from 1,4-dicyanobenzene (CTF-1) by rapid microwave induced decomposition of their binary metal(0) carbonyls for Ru, Rh and Ir or Pt(acac)2 in the presence of CTF-1 in the ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIm][NTf2]) or in propylene carbonate (PC). (High-resolution) transmission electron microscopy, (HR-)TEM showed the formation of M-NPs on CTF-1 with, e.g., size distributions of 3.0 (±0.5) nm for Ru@CTF-1 synthesized in [BMIm][NTf2] and 2 (±1) nm for Rh@CTF-1 synthesized in PC. The crystalline phases of the M-NPs and the absence of significant impurities were verified by powder X-ray diffraction (PXRD) and selected area electron diffraction (SAED). The metal content of the M@CTF-1 composites was determined by flame atomic absorption spectroscopy (AAS) to be between 3 and 12 wt. The Rh@CTF-1 composite nanomaterial proved to be a highly active (∼31 000 mol cyclohexane per (mol Rh) per h) heterogeneous catalyst for the hydrogenation of benzene to cyclohexane under mild (10 bar H2, 70 °C) and solvent-free conditions with over 99 conversion. The catalyst could be re-used for at least ten consecutive hydrogenation reactions. Additionally, Rh@CTF-1 is an active electrocatalyst for the hydrogen evolution reaction (HER) with an operating potential of -58 mV, while Pt@CTF-1 and commercial Pt/C shows a more negative operating potential of -111 and -77 mV. Also the onset potential of -31 mV for Rh@CTF-1 is much more positive than that of Pt@CTF-1 (-44 mV) and commercial Pt/C (-38 mV). This journal is © The Royal Society of Chemistry.