English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

On the size distribution of spots within sunspot groups

MPS-Authors

Mandal,  S.
Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons104034

Krivova,  Natalie A.
Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons103859

Cameron,  Robert H.
Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons104218

Solanki,  Sami K.
Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Mandal, S., Krivova, N. A., Cameron, R. H., & Solanki, S. K. (2021). On the size distribution of spots within sunspot groups. Astronomy and Astrophysics, 652: A9. doi:10.1051/0004-6361/202140621.


Cite as: https://hdl.handle.net/21.11116/0000-0009-A512-8
Abstract
The size distribution of sunspots provides key information about the generation and emergence processes of the solar magnetic field. Previous studies of size distribution have primarily focused on either the whole group or individual spot areas. In this paper we investigate the organisation of spot areas within sunspot groups. In particular, we analysed the ratio (R) of the area of the biggest spot (Abig_spot) inside a group, to the total area of that group (Agroup). We used sunspot observations from Kislovodsk, Pulkovo, and Debrecen observatories, together covering solar cycles 17–24. We find that at the time when the group area reaches its maximum, the single biggest spot in a group typically occupies about 60% of the group area. For half of all groups, R lies in the range between roughly 50% and 70%. We also find R to change with Agroup, such that R reaches a maximum of about 0.65 for groups with Agroup ≈ 200 μHem and then remains at about 0.6 for larger groups. Our findings imply a scale-invariant emergence pattern, providing an observational constraint on the emergence process. Furthermore, extrapolation of our results to larger sunspot groups may have a bearing on the giant unresolved starspot features found in Doppler images of highly active Sun-like stars. Our results suggest that such giant features are composed of multiple spots, with the largest spot occupying roughly 55–75% of the total group area (i.e., the area of the giant starspots seen in Doppler images).