English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Addressing the System-Size Dependence of the Local Approximation Error in Coupled-Cluster Calculations

MPS-Authors
/persons/resource/persons58397

Altun,  Ahmet
Research Group Bistoni, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons251063

Ghosh,  Soumen
Research Group Izsák, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons216825

Neese,  Frank
Research Department Neese, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons216804

Bistoni,  Giovanni
Research Group Bistoni, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)

Kopie von jp1c09106_si_001.xlsx
(Supplementary material), 2MB

Citation

Altun, A., Ghosh, S., Riplinger, C., Neese, F., & Bistoni, G. (2021). Addressing the System-Size Dependence of the Local Approximation Error in Coupled-Cluster Calculations. The Journal of Physical Chemistry A, 125(45), 9932-9939. doi:10.1021/acs.jpca.1c09106.


Cite as: http://hdl.handle.net/21.11116/0000-0009-7F8B-D
Abstract
Over the last two decades, the local approximation has been successfully used to extend the range of applicability of the “gold standard” singles and doubles coupled-cluster method with perturbative triples CCSD(T) to systems with hundreds of atoms. The local approximation error grows in absolute value with the increasing system size, i.e., by increasing the number of electron pairs in the system. In this study, we demonstrate that the recently introduced two-point extrapolation scheme for approaching the complete pair natural orbital (PNOs) space limit in domain-based pair natural orbital CCSD(T) calculations drastically reduces the dependence of the error on the system size, thus opening up unprecedented opportunities for the calculation of benchmark quality relative energies for large systems.