English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Axon guidance: Stretching gradients to the limit

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Goodhill, G. J., & Baier, H. (1998). Axon guidance: Stretching gradients to the limit. Neural computation, 10(3), 521-527. doi:10.1162/089976698300017638.


Cite as: https://hdl.handle.net/21.11116/0000-0009-8359-F
Abstract
Neuronal growth cones, the sensory-motile structures at the tips of developing axons, navigate to their targets over distances that can be many times greater than their diameter. They may accomplish this impressive task by following spatial gradients of axon guidance molecules in their environment (Bonhoeffer & Gierer, 1984; Tessier-Lavigne & Placzek, 1991; Baier & Bonhoeffer, 1994). We calculate the optimal shape of a gradient and the distance over which it can be detected by a growth cone for two competing mechanistic models of axon guidance. The results are surprisingly simple: Regardless of the mechanism, the maximum distance is about 1 cm. Since gradients and growth cones have coevolved, we suggest that the shape of the gradient in situ will predict the mechanism of gradient detection. In addition, we show that the experimentally determined dissociation constants for receptor-ligand complexes implicated in axon guidance are about optimal with respect to maximizing guidance distance. The relevance of these results to the retinotectal system is discussed.