Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

The CoPhyLab comet-simulation chamber


Sierks,  Holger
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;


Güttler,  Carsten
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Kreuzig, C., Kargl, G., Pommerol, A., Knollenberg, J., Lethuillier, A., Molinski, N., et al. (2021). The CoPhyLab comet-simulation chamber. Review of Scientific Instruments, 92(11): 115102. doi:10.1063/5.0057030.

Cite as: https://hdl.handle.net/21.11116/0000-0009-A467-A
The Comet Physics Laboratory (CoPhyLab) is an international research program to study the physical properties of cometary analog materials under simulated space conditions. The project is dedicated to studying, with the help of multiple instruments and the different expertise and background from the different partners, the physics of comets, including the processes inside cometary nuclei, the activity leading to the ejection of dust and gas, and the sub-surface and surface evolution of cometary nuclei when exposed to solar illumination. CoPhyLab will provide essential information on the formation and evolution of comets and insights into the origins of primitive Solar System bodies. To this end, we constructed a new laboratory that hosts several small-scale experiments and a large-scale comet-simulation chamber (L-Chamber). This chamber has been designed and constructed to host ice–dust samples with a diameter of up to 250 mm and a variable height between 100 and 300 mm. The cometary-analog samples will be kept at temperatures below 120 K and pressures around 10−6 mbar to ensure cometary-like conditions. In total, 14 different scientific instruments are attached to the L-Chamber to study the temporal evolution of the physical properties of the sample under different insolation conditions. Due to the implementation of a scale inside the L-Chamber that can measure weight changes of the samples with high precision, the cooling system is mechanically decoupled from the sample holder and cooling of the samples occurs by radiation only. The constructed chamber allows us to conduct uninterrupted experiments at low temperatures and pressures up to several weeks.