Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Bioinspired compartmentalization strategy for coating polymers with self-organized prismatic films

MPG-Autoren
/persons/resource/persons121298

Fratzl,  Peter
Peter Fratzl, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons227318

Amini,  Shahrouz
Shahrouz Amini, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Article.pdf
(Verlagsversion), 12MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Li, Z.-Z., Li, M., Feng, Y.-x., Zhang, Z., Wen, Y.-E., Huang, Q.-Q., et al. (2021). Bioinspired compartmentalization strategy for coating polymers with self-organized prismatic films. Chemistry of Materials, 33(23), 9240-9251. doi:10.1021/acs.chemmater.1c02868.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-A3E3-E
Zusammenfassung
Biomineralization provides load-bearing and protective functions to living organisms by reinforcing soft tissues. Translation of biomineralization principles to materials science in a controlled and self-organized fashion is highly desirable but challenging. A major lesson from natural systems is that crystallization may be controlled by compartmentalization and templating. Here, we develop a crystallization technique based on graphene oxide-mediated compartmentalization and on templating prismatic growth of calcite nanocoatings via control of ionic diffusivity into the microcompartments, which results in a multistage, self-organized crystallization and represents an effective strategy for providing continuous nanocoatings and enhancing the tribological performance of polymeric surfaces under contact stresses. The present research offers a bottom-up approach of using very basic biomineralization principles for the protection of polymeric surfaces, which are of interest for biomedical applications and the fabrication of high-performance functional materials in a sustainable manner.