English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Optocollic responses in adult barn owls (Tyto furcata)

MPS-Authors
/persons/resource/persons246218

Wagner,  H
Former Department Comparative Neurobiology, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84128

Pappe,  I
Former Department Comparative Neurobiology, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons245801

Nalbach,  H-O
Former Department Comparative Neurobiology, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Wagner, H., Pappe, I., & Nalbach, H.-O. (2022). Optocollic responses in adult barn owls (Tyto furcata). Journal of Comparative Physiology A: Neuroethology Sensory Neural and Behavioral Physiology, 208(2), 239-251. doi:10.1007/s00359-021-01524-z.


Cite as: https://hdl.handle.net/21.11116/0000-0009-8A0B-0
Abstract
Barn owls, like primates, have frontally oriented eyes, which allow for a large binocular overlap. While owls have similar binocular vision and visual-search strategies as primates, it is less clear whether reflexive visual behavior also resembles that of primates or is more similar to that of closer related, but lateral-eyed bird species. Test cases are visual responses driven by wide-field movement: the optokinetic, optocollic, and optomotor responses, mediated by eye, head and body movements, respectively. Adult primates have a so-called symmetric horizontal response: they show the same following behavior, if the stimulus, presented to one eye only, moves in the nasal-to-temporal direction or in the temporal-to-nasal direction. By contrast, lateral-eyed birds have an asymmetric response, responding better to temporal-to-nasal movement than to nasal-to-temporal movement. We show here that the horizontal optocollic response of adult barn owls is less asymmetric than that in the chicken for all velocities tested. Moreover, the response is symmetric for low velocities (< 20 deg/s), and similar to that of primates. The response becomes moderately asymmetric for middle-range velocities (20-40 deg/s). A definitive statement for the complex situation for higher velocities (> 40 deg/s) is not possible.