English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Diverse epigenetic mechanisms maintain parental imprints within the embryonic and extraembryonic lineages

MPS-Authors
/persons/resource/persons208934

Kretzmer,  Helene
Dept. of Genome Regulation (Head: Alexander Meissner), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons203770

Meissner,  Alexander
Dept. of Genome Regulation (Head: Alexander Meissner), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Andergassen_2021.pdf
(Publisher version), 3MB

Supplementary Material (public)

Andergassen et al_2021_Suppl.zip
(Supplementary material), 6MB

Citation

Andergassen, D., Smith, Z. D., Kretzmer, H., Rinn, J. L., & Meissner, A. (2021). Diverse epigenetic mechanisms maintain parental imprints within the embryonic and extraembryonic lineages. Developmental Cell, 56(21): e4, pp. 2995-3005. doi:10.1016/j.devcel.2021.10.010.


Cite as: https://hdl.handle.net/21.11116/0000-0009-8C19-E
Abstract
Genomic imprinting and X chromosome inactivation (XCI) require epigenetic mechanisms to encode allele-specific expression, but how these specific tasks are accomplished at single loci or across chromosomal scales remains incompletely understood. Here, we systematically disrupt essential epigenetic pathways within polymorphic embryos in order to examine canonical and non-canonical genomic imprinting as well as XCI. We find that DNA methylation and Polycomb group repressors are indispensable for autosomal imprinting, albeit at distinct gene sets. Moreover, the extraembryonic ectoderm relies on a broader spectrum of imprinting mechanisms, including non-canonical targeting of maternal endogenous retrovirus (ERV)-driven promoters by the H3K9 methyltransferase G9a. We further identify Polycomb-dependent and -independent gene clusters on the imprinted X chromosome, which appear to reflect distinct domains of Xist-mediated suppression. From our data, we assemble a comprehensive inventory of the epigenetic pathways that maintain parent-specific imprinting in eutherian mammals, including an expanded view of the placental lineage.