English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Where infall meets outflows: turbulent dissipation probed by CH+ and Lyα in the starburst/AGN galaxy group SMM J02399−0136 at z ∼ 2.8

MPS-Authors
/persons/resource/persons238791

Arrigoni Battaia,  F.
Galaxy Formation, Cosmology, MPI for Astrophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Vidal-García, A., Falgarone, E., Arrigoni Battaia, F., Godard, B., Ivison, R. J., Zwaan, M. A., et al. (2021). Where infall meets outflows: turbulent dissipation probed by CH+ and Lyα in the starburst/AGN galaxy group SMM J02399−0136 at z ∼ 2.8. Monthly Notices of the Royal Astronomical Society, 506(2), 2551-2573. doi:10.1093/mnras/stab1503.


Cite as: https://hdl.handle.net/21.11116/0000-0009-8E01-6
Abstract
We present a comparative analysis of the CH+(1–0) and Lyα lines, observed with the Atacama Large Millimeter Array and Keck telescope, respectively, in the field of the submillimetre-selected galaxy SMM J02399−0136 at z ∼ 2.8, which comprises a heavily obscured starburst galaxy and a broad absorption line quasar, immersed in a large Lyα nebula. This comparison highlights the critical role played by turbulence in channelling the energy across gas phases and scales, splitting the energy trail between hot/thermal and cool/turbulent phases in the circumgalactic medium (CGM). The unique chemical and spectroscopic properties of CH+ are used to infer the existence of a massive (∼3.5 × 1010 M), highly turbulent reservoir of diffuse molecular gas of radius ∼20 kpc coinciding with the core of the Lyα nebula. The whole cool and cold CGM is shown to be inflowing towards the galaxies at a velocity ∼ 400 km s−1. Several kpc-scale shocks are detected tentatively in CH+ emission. Their linewidth and specific location in space and velocity with respect to the high-velocity Lyα emission suggest that they lie at the interface of the inflowing CGM and the high-velocity outflowing gas. They signpost the feeding of CGM turbulence by active galactic nuclei- and stellar-driven outflows. The mass and energy budgets of the CGM require net mass accretion at a rate commensurate with the star formation rate. From this similarity, we infer that the merger-driven burst of star formation and black-hole growth are ultimately fuelled by large-scale gas accretion.